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ABSTRACT 

The Aerial Collision Avoidance System is designed to implement collision avoidance on a 

quadcopter platform using minimal sensor input. The project consists of wireless 

communication system, IR range-finders, a real-time Linux system, and a quadcopter aerial 

platform. The quadcopter is controlled by a computer connected to the system 

wirelessly.  The Linux system minutely alters given commands to avoid obstacles based on 

ranging sensor inputs.  The system is also designed to keep the aerial platform in place or 

land it safely in case of communication link breakdown. 

  



 

2 

 

 

TABLE OF CONTENTS 

Abstract ..................................................................................................................................................................... 1 

Introduction .............................................................................................................................................................. 3 

Goals .......................................................................................................................................................................... 3 

Block Diagram and System Description ..................................................................................................................... 4 

Hardware ................................................................................................................................................................... 5 

Platform power distribution .................................................................................................................................. 5 

Sensors ................................................................................................................................................................... 6 

Beagleboard omap 3530 ........................................................................................................................................ 8 

Software .................................................................................................................................................................... 9 

Linux Kernel and Xenomai ..................................................................................................................................... 9 

PWM Output ........................................................................................................................................................ 10 

DSP software........................................................................................................................................................ 10 

Progress towards completion ................................................................................................................................. 13 

System Integration............................................................................................................................................... 13 

Software Functions .............................................................................................................................................. 13 

Future Work ............................................................................................................................................................ 14 

References ............................................................................................................................................................... 16 

Appendix A: Switching Power Regulator ................................................................................................................. 17 

Appendix B: I2C translator ...................................................................................................................................... 18 

Appendix C: I2Ctest ................................................................................................................................................. 19 

Appendix D: PWM.c ................................................................................................................................................ 22 

Appendix E: PWM_Funcs.c ...................................................................................................................................... 25 

 

  



 

3 

 

INTRODUCTION 

Quadcopters maintain the ability to move rapidly and agilely through the air much like a plane while 

maintaining the helicopter’s ability to hover and move at low airspeeds. By equipping such a copter with distance 

sensors and cameras an autonomous aerial vehicle is created which can avoid nearby obstacles regardless of 

velocity. Information gathered by these sensors will then be used to navigate the quadcopter through spaces too 

tight for other styles of autonomous aerial vehicles. 

GOALS 

 Since this is the first time an aerial robotic project is attempted in our ECE department it was hard to 

foresee how much work can be accomplished. Original project was aiming for a complete autonomous quadcopter 

platform. However, in the course of research and development it turned out that these goals were not obtainable 

in the time allotted. The following list is the original goals of the project: 

 To develop a quadrocopter platform  

 Autonomously navigate through narrow passages using onboard and stationary sensors 

 Avoid obstacles using video and other sensor feedback 

 Implement backup fly-by-wire controls for safety and testing 

 After numerous discoveries it was determined that the time frame for the original project was much too 

short. As such, the goals were revised with goals that were possibly obtainable within the time frame. 

 Use various sensors to detect obstacles 

 Autonomously avoid obstacles in the path 

 Eliminate collisions due to human error 

The revised goals indicate the system was more complicated and nuanced than originally anticipated. After 

encountering difficulties it was determined that time was best spent heavily documenting the process of 

attempting to meet the revised goals in lieu of the original goal specifications. The documentation left is a 

complete set of materials and resources believed to be necessary and sufficient for the completion and extension 

of the original goals in future projects.  
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BLOCK DIAGRAM AND SYSTEM DESCRIPTION 
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Figure 1 System Block Diagram  

 There are various subsystems, including the XAircraft X650 quadcopter platform, BeagleBoard-xM, IR 

distance sensors, and camera for visual input.  

 The entire project is based on the XAircraft X650 quadcopter as the flying platform. This choice was made 

based on its lifting capabilities and cost effectiveness. The platform contains a flight controller, attitude heading 

reference system (AHRS) , electronic speed controllers (ESC) and brushless motors. The flight controller receives 

input usually from a remote control transmitter/receiver combo, but for this project it receives input from the 

BeagleBoard directly. This relationship can be seen in the right of Figure 1. The AHRS is responsible for stability of 

the platform by transmitting attitude and heading information to the flight controller. The flight controller then 

transmits control signals to the ESC’s which drive the brushless motors. 

 The BeagleBoard-xM is a high end hobbyist embedded computing solution. It contains a TI OMAP 

processor, which includes integrated ARM and DSP cores. The BeagleBoard is the main component of this project 

and can be seen in the center of Figure 1. It has many input and output ports including USB, audio, HDMI, PS/2, 

and serial. In addition to its many ports, it runs Linux which the teams familiarity with increased productivity 

throughout the project.  

 Infrared distance sensors are used to aid in obstacle avoidance. The interface to the BeagleBoard can be 

seen on the left of Figure 1. The decision criteria for the sensors were predominately based on effective distance, 

as the project needed sensors that functioned from ~15-150cm. The Sharp GP2Y0A02YK0F sensor was chosen 

primarily based on meeting the range requirements and low cost.  

 A Leopard Imaging 5 megapixel camera is used for image processing in combination with the BeagleBoard. 

The camera was chosen because the BeagleBoard has a header specifically design for this style camera. The 5 

megapixel model creates a high resolution image providing large amounts of information for image processing. 
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HARDWARE 

 The following sections describe the hardware subsystems used in this project. The major hardware 

components are shown in the block diagram section above and consist of: platform power distribution, sensors, 

and the BeagleBoard. The list below indicates equipment either purchased or modified for this project in 

particular. 

 XAircraft X650 Quadcopter Platform 

 BeagleBoard-xM 

 Leopard Imaging 5MP Camera 

 Belkin Wireless USB network card  

 IR distance sensors (Sharp GP2Y0A02YK0F) 

 Octal ADC TI ADS7823-28EVM 

 Sparkfun Logic Level Converter (1.8V to 5V) 

 Battery (11.1V 3S LiPo) 

 5V Switching Power Regulator 

In addition to materials used for the platform and project itself, a number of laboratory devices were used 

in the building and testing of individual project components. The list below shows the particular pieces of 

equipment used in the lab for testing and debugging purposes. 

 EQ-2690 Tektronix TDS 2024B Oscilloscope 

 EQ-2385 Agilent E3630A DC Bench supply 

 EQ-2140 Fluke 45 DMM 

 EQ-2700 Agilent 33220A Waveform Generator 

PLATFORM POWER DISTRIBUTION 

 The quadcopter platform requires a typical 11.1V battery, so a battery was chosen with an output voltage 

of 11.1V and a high capacity. Since the project has numerous subsystems, a 5000mAh 3 cell Lithium Polymer 

battery was chosen to power the project. The platform flight controller and ESCs run directly off of the 11.1V 

battery, while the rest of the subsystems require 5V. To accomplish this, a switching regulator was borrowed from 

another project and rebuilt to be lighter with a smaller footprint. The regulator provides a stable 5V output for the 

rest of the platform subsystems. The circuit we used was one of the test circuits for the LM2576HV-ADJ part, with 

one addition. A potentiometer was included to tune the output voltage to precisely 5V, because the BeagleBoard 

needs a consistent supply of 5V.  The circuit for the switching regulator can be seen in Appendix A. Figure 2 below 

displays how power is distributed across the platform. 
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Figure 2 Platform Power Distribution 

SENSORS 

The sensors used for this project include: 

 5MP camera (LI-LBCM5M1) 

 IR distance sensors (Sharp GP2Y0A02YK0F) 

 

The purpose of the camera is to provide feedback on how fast and far the platform has traveled through 

image processing. This task can be performed by capturing images below the platform where “markers” will be 

placed along the platforms flight-path. These “markers” can be dots of specific color that the software would 

recognize. The camera plugs directly into a socket on the Beagleboard, where it communicates over a parallel 

protocol, and is to be positioned on the platform so it is pointing downward. The image resolution is reduced to a 

smaller resolution, such as 800x600, to perform image processing quicker.  

 Six Sharp GP2Y0A02YK0F Infrared distance sensors are used to determine distances in various directions. 

The following sections will detail the layout of the sensors, communication protocol, distance calculation, and the 

software system. 

 The IR sensors are placed in the positive and negative directions of Euclidian 3-space. These directions 

correspond to north, south, east, west, up, and down relative to the center of the quadcopter’s compass. This 

arrangement is used to give the quadcopter a basic view of its surroundings. The Inter-integrated circuit (I2C) 

communication protocol is used to communicate with the sensors through an ADC. 

I2C FOR SENSOR INPUT 
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 I2C is present on both the BeagleBoard and ADC board. It provides adequate communication bandwidth 

and accessibility, making it the obvious choice for data acquisition. The ADC is connected to the BeagleBoard over 

the traditional 3-wire I2C setup (GND, SCL, SDA), with a level translator in between to translate the logic level from 

BeagleBoard (1.8V) to ADC (5V) levels. Each sensor is connected to the ADC through a separate channel and the 

ADC acts as a multiplexer to read multiple channels over a single I2C bus. The level translators go in between the 

BeagleBoard and ADC. Here is the arrangement of the translators on the I2C bus: 

 

Figure 3 Level shifting circuit 

Figure 3 is only a generic level shifting circuit; the circuit actually used can be found in Appendix B. A part 

from Sparkfun [1] was utilized that provided the exact circuit needed for I2C translation for cheaper than could be 

made individually for use with this project. 

SENSOR DISTANCE CALCULATION 

 Below in Figure 4 it can be seen that sensor output voltage is a nonlinear function. The nonlinear function 

is difficult to use when calculating discrete sensor values. The solution is to linearize the relationship between 

distance and an arbitrary function of voltage. A common method of linearizing IR range sensor data is through the 

use of a power function as in the code line below from Physical Computing [2]: 

float distance = 12343.85 * pow(analogRead(sensorPin), -1.15) 

As is apparent above, the distance calculation utilizes a floating point power function with a non-integer 

power. Normally in large systems, the power function is acceptable however the BeagleBoard’s processor does not 

contain a floating point unit and must emulate floating point calculations in software. Due to the performance 

penalty of emulating floating point power functions the standard linearization function above is unsuitable and 

should not be used in a system expecting near real-time performance. 

In lieu of the linearization above, this project uses a linear piecewise interpolation between experimental 

data points. The interpolation can be seen in the Figure 4 below as the straight lines connecting subsequent data 
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points. The accuracy of this method can be increased linearly with respect to the number of data points used in the 

interpolation, allowing additional accuracy with minimal code maintenance should it be required in the future.   

 

Figure 4 Sensor Output vs. Measured Distance 

SENSOR CODE 

 The code that was used to communicate with the sensors can be found in Appendix C. It is used to acquire 

data from each sensor and compute the distance to the nearest object, if available. The sensor data is then placed 

in a shared memory location. 

BEAGLEBOARD OMAP 3530 

 The Beagleboard was chosen for this project because it had the TI OMAP 3530 processor chip onboard. 

The OMAP 3530 processor controls all peripherals, subsystems, and memory connections on the Beagleboard 

using the L3 and L4 busses. The main subsystems that are used in this project are the ARM and DSP cores. The 

ARM core is used to control the I2C and the PWM functionalities and the DSP core is used for capturing images and 

image processing.  

 The OMAP processor is capable of running uC Linux or a lightweight regular Linux distribution. When 

running a full-fledged Angstrom Linux distribution with a graphical interface, the BeagleBoard consumes 1.3A at 

5V. Additionally the BeagleBoard weighs in at 66 grams, which is very light considering the processing power 

available. These were the main reasons the BeagleBoard was chosen for this project. 

DSP HARDWARE 

 The DSP core on the BeagleBoard is primarily used for processing digital signals like images or sound at a 

very fast rate. Finding out how the camera and DSP core interact was a challenging task. First of all, the camera 
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module sends in pixel data in parallel to the camera image signal processor or ISP on the OMAP 3530 chip. The 

camera ISP is connected to the DSP core through the L3 bus. The L3 bus allows for other interconnections from the 

DSP core to other systems such as the ARM core or to memory. 

The camera ISP supports up to 12-bits of RAW RGB data which can be used with the 5 MP leopard imaging 

camera. The RAW data is transferred in parallel, when in SYNC mode, through signal cam_d0 to cam d11 where 

one pixel is sampled every cam_pclk rising edge. This process is shown below in Figure 5 where cam_hs and 

cam_vs are used to identify active pixels. The RAW data can be sent to the DSP core to be processed then be sent 

to memory. 

 

Figure 5 Camera ISP clock timing 

SOFTWARE 

The software subsystems in the project form a complex and comprehensive set of functions and routines 

including: reading the sensors, pulse width modulation, and image processing. This section details the Linux kernel 

providing the foundational processing structures, PWM output generation for flight control, I2C sensor data 

acquisition, and color distance calculation. 

LINUX KERNEL AND XENOMAI 

 Linux is the chosen operating system (OS) for this project to provide high level abstractions of hardware 

and data management.  This OS was chosen due to its efficiency when running on an embedded system and the 

presence of many default device drivers necessary for operation.  Initially the Angstrom Linux distribution with 

kernel 2.6 was chosen to provide an initial on-board development environment to explore the software 

requirements to operate the hardware in the necessary fashion.  The Angstrom distribution provided a test bed to 

determine rough power and timing requirements. 

 The platform currently uses a Linux kernel 2.6 patched with Xenomai – a real-time subsystem for Linux – 

which decreased power draw by 80% (mostly due to lack of graphical output and fewer processes running) and 

increased timing accuracy by three orders of magnitude.  The current power draw is around .2A and the kernel has 

a timing accuracy to the microsecond.  The power consumption is achieved by disabling video output on the HDMI 

port and Xenomai running the kernel in a hypervisor to create a pseudo real-time OS.  The precision timing 

functions provided by a real-time environment are necessary for the PWM functionality and communication with 

the platform.  

 The Xenomai system supports a number of Application Programming Interfaces (APIs) called Skins.  Each 

Skin is a complete set of functions emulating a proprietary API.  The particular Skin used in this project is the Real 

Time Application Interface (RTAI) as it is a default and commonly used Skin.  The particular function used to 

generate timings for PWM signals is rt_sleep(RTIME delay) which suspends a process for delay nanoseconds.  

Additionally the Xenomai patch integrates into the default threading system in Linux which spawns non-real-time 
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threads.  The spawned threads however can become nearly real-time through the use of precision timing functions 

which allow the thread to interrupt kernel code at the end of the timing. 

PWM OUTPUT 

The industry standard RC PWM consists of a number of pulses occurring with a frequency of 50Hz.  The 

pulses vary from -100%PWM to +100%PWM indicating a high voltage time of 1ms to 2ms respectively.  The 

remainder of the 20ms period is low voltage.  The 0% PWM then becomes a pulse with a 1.5ms high time followed 

by 18.5ms of low voltage.  Figure 6 below demonstrates the shape of the RC pulses. 

 

An aerial platform such as a quadcopter requires 4 communication channels for total control and a fifth 

channel for gear/mode.  The five channels required are pinned out to five General Purpose Input Output (GPIO) 

pins on the BeagleBoard xM's expansion header.  Each pin is controlled by an individual software thread in charge 

of timing the switching.  This functionality is split between an initialization/control file <PWM.c> (Appendix D) and 

the pin control file <PWM_Funcs.c> (Appendix E). 

PWM.c contains the initialization code using the Linux device drivers.  These are used because the 

initialization is not a time sensitive process and the time taken for the driver to properly initialize the pin will have 

no effect on the final output.  The program then initializes a shared memory segment mapped to the physical 

location of the GPIO control regions.  The memory and some control information is then passed to the generation 

function spawned as a new thread.  The generation function uses direct memory access via the shared segment to 

control the pin state which is the updated by the CPU automatically. 

 The pin voltage for a logic high is 1.8V and low voltage is 0V.  The quadcopter platform relies on a logic 

level input of 0V low to 5V high.  To facilitate the conversion a set of logic translators identical to those used for the 

I2C bus are employed to push the 1.8V up to 5V while maintaining the 0V low voltage.  Figure 3 demonstrates this 

conversion where the SDA and SDL lines will be replaced with PWM channels. 

DSP SOFTWARE 

Determining which algorithm would be used for image processing was a very crucial decision for this 

project. At first, the idea of canny edge detection was brought up where the edges of the “markers” would be 

marked and compared to previous images. But that idea was changed to doing corner detection on the “markers” 

and comparing the corner points of previous images.  

After extensive research, the Smallest Univalue Segment Assimilating Nucleus, or SUSAN, corner detection 

would be used to perform edge detection. The SUSAN corner detection algorithm takes the pixel in question, 

known as the nucleus pixel, and places a circular mask around the nucleus pixel. All pixels in the mask are 

Figure 6 RC PWM timing 
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compared to the nucleus pixel and if that pixel’s brightness matches the nucleus pixel’s brightness it is marked in 

the mask as the “USAN”. Invalid source specified. Using the USAN, corners can be determined by marking where 

the edges of the USAN meet. This is ideal because every pixel doesn’t need to be tested as the nucleus to find the 

corners; this will decrease processing time and processing usage. 

Once the algorithm for image processing on the DSP was selected, code needed to be written and 

compiled for use on the DSP core. This proved to be a challenging task since there was a lack of knowledge when it 

came to interfacing with the DSP and the online documentation pertaining to this task are scattered. It was found 

out that the code for the DSP needed to be cross compiled on a host computer and then the compiled program is 

transferred to the Beagleboard for the DSP to run it. The first compiler that was tried was c6run since the Linux 

community had a guide to setting it up on the Beagleboard. Unfortunately, the host kernel version was not 

compatible with the version of c6run installed and there were missing required files. After that compiler failed and 

no quick solution was available it was decided to try another compiler since time was running out. The next 

compiler that was tried was CodeSourcery which needed a registration in order to obtain the software. But the 

email that provided a link to the software download never came and time was short.  

There were factors that caused delays in the project which caused the DSP part of the project to fall 

behind schedule. First, going into this project there was a lack of knowledge in the team pertaining to DSP chips 

and how to program them. Another factor that caused delay was learning how the camera module and DSP 

interfaces with each other. This was crucial research so that when the cross compiler was properly set up on the 

Beagleboard writing the image processing code could begin immediately. Getting a working cross compiler on the 

Beagleboard and host computer was the next issue that caused the most delay in the project. This was supposed 

to be a quick step but took the most time due to compatibility issues with the host computer. Due to the lack of 

time, having the camera module directly interact with the DSP core was not possible with the given time left. 

Instead, it was suggested by our advisor to use Video4Linux APIs to capture an image and to use a color 

distance algorithm as a proof of concept that it was possible to capture images on the Beagleboard and process 

them. The Video4Linux APIs utilize the DSP core by bringing in the data from the camera to the DSP core which 

then stores it into a memory buffer where the ARM core receives the data to be written. Since Video4Linux doesn’t 

allow for direct processing of pixels on the DSP core the color distance algorithm is processed on the ARM core 

before the data was written.  

Color distance algorithm was used because it is a color filter algorithm that calculates a pixel’s closeness 

to the selected color by using a distance equation. It does this by first calculating the difference of each color 

component (the following code selects the color red). 

                                         

Next it calculates the distance using the difference of the color components and the max value for the colors (255). 

                                                                              

Then it updates the pixel to the distance calculated and the weighted sums for the center, width, and height. 

                                               

                                                                    

This color distance process for the code is shown below in Figure 7. 
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Figure 7 Color Distance Process 

 

COLOR DISTANCE RESULTS 

The given code above filters all other colors except the color red. So when the code is ran on an image all 

pixels that are closer to the RGB value of 255,0,0 will appear “close” or be brighter and all pixels that are far away 

from the RGB value of 255,0,0 will appear “far” or darker. This is shown below in figure 8 where the left image is 

unfiltered and the right image is filtered with the color distance algorithm. 

  

Figure 8 Color Distance Results 
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PROGRESS TOWARDS COMPLETION 

 Currently the system is able to collect sensor information and accurately detect obstacles. The collision 

avoidance algorithm has not yet been started but the hardware and software systems are in place for an algorithm 

to be developed. Finally, the elimination of collisions due to human error is contingent upon obstacle avoidance 

and is therefore not yet achieved.  

Despite not meeting the majority of goals for the project, significant progress has been made towards a 

platform which can avoid obstacles prior to human intervention. The following sections will discuss the progress 

achieved and not achieved in a number of key facets of the project. 

SYSTEM INTEGRATION  

 The lack of prior work led to spending approximately half of project work time evaluating system 

components. Due to the magnitude of this project, special care was taken in evaluating all platform options and 

other components. Some components had a long lead time forcing the project to begin later than anticipated.  

 System integration work began in earnest upon receipt of the platform and other components. To date, 

the IR sensors have been mounted and interfaced with the BeagleBoard. However, a proper mounting method for 

the BeagleBoard has not been determined. Rotor guards have been fashioned to protect both people and the 

platform from collision. All systems currently can run off of the on board battery with the use of the switching 

regulator. The PWM outputs are ready to be interfaced with the flight controller upon completion of a collision 

avoidance algorithm. 

SOFTWARE FUNCTIONS 

 The BeagleBoard offers great power and flexibility, which is the reason why the board was selected. 

However, the board excels at no particular function. Linux was chosen as the operating system on the platform to 

provide convenient interfaces for hardware devices, as well as the team’s familiarity with the OS.  

 Angstrom Linux is the default distribution for the BeagleBoard-xM so it was the distribution of choice, 

providing full hardware support for the board. Angstrom was used as a test bed for software code with the 

intention of moving code to a headless version of Linux at a later date to conserve power and increase 

computational speed. The Xenomai real-time framework was chosen after determining that the timing for PWM 

generation was required to be more accurate than could be provided by a non-real-time kernel. Differences in 

kernel revisions ensured that the process of patching a particular kernel with Xenomai would be long and arduous, 

but ultimately completed. Unfortunately Xenomai does not officially support the BeagleBoard-xM revision C that 

the project used and as such, no hardware external to the processor is functional. 

 PWM generation was originally a script which toggled pin outputs using the default GPIO hardware 

drivers provided by the Linux kernel. The waveforms generated by the script had a substantial amount of jitter and 

the script was migrated to a C program. However the C program suffered from similar amount of jitter due to there 

being no real-time functionality in the default kernel. The C program running identical code under the Xenomai 

framework performs exceptionally well and reduced the jitter the jitter to acceptable levels. 
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 I2C is functioning and sensor data can be acquired through C code that runs on the BeagleBoard. The I2C 

chain works and the level shifter works flawlessly. A few problems were encountered along the way with how the 

Linux kernel communicates over the I2C bus. These problems were rectified by using a logic analyzer to monitor 

the I2C bus traffic and diagnose the problem.  

 With the aid of the Xenomai real-time framework, the project has achieved real-time performance during 

PWM generation. The I2C code will also be able to run under Xenomai as real-time code, allowing for data to be 

acquired on a periodic basis. Communication with the DSP core, when complete, will also be initiated on a periodic 

basis, allowing for images and their information to be processed with minimal CPU overhead. As a whole, once 

every system component is fully assembled and integrated, there should be no issues running the platform control 

applications on a real-time periodic basis with accurate timing. 1/50th of a second would be a baseline for obstacle 

avoidance because of the 50Hz pulse rate of the RC PWM pulses. This time is the minimum possible response time 

due to the pulse rate of the RC PWM pulses. 

FUTURE WORK 

 Although this project has not been completed, there is plenty of room for future work on the platform. 

This team was unable to mount the subsystems to the platform; this would be the next logical step for a new team. 

A majority of the time for this project was spent learning how to utilize the following functionality of the 

BeagleBoard that goes beyond standard Linux-based computing platforms: real-time RC PWM output, running 

code on an integrated DSP core, and I2C interfacing. Real-time PWM generation was initially believed to be an 

almost trivial script to toggle GPIO pins on the expansion header of the BeagleBoard, unfortunately the real-time 

PWM generation proved to be a difficult task. The difficulty to get a non-real-time Linux system to reliably output 

signals for platform control was no small feat. The discovery of the Xenomai real-time framework saved the PWM 

portion of the project and eventually allowed the project to adequately output PWM signals. Another time-

consuming problem was trying to run code on the DSP core. Since the BeagleBoard has an onboard DSP core, it 

was believed that interfacing code for image and signal processing would be a simple process, but it was not. There 

was no discovered way to directly interface to the DSP core, which provided a serious problem for the image 

processing portion of the project. Hopefully a new version of the Linux kernel that runs on the BeagleBoard will fix 

the DSP to ARM interface and easily allow code to run on the DSP core. The final problem the team encountered 

that went above a typical Linux platform was I2C interfacing. The I2C libraries included with Angstrom suffered 

from a lack of documentation that gave the team a rough time developing code to interface over the I2C bus. 

Although Linux is the team’s ideal embedded OS, the BeagleBoard provided the aforementioned problems that 

took up a significant amount of time. 

The documentation completed as part of the project should alleviate some of the problems of learning 

the new hardware and its limits. This team wanted to utilize the DSP to perform image processing necessary for 

this project. It is recommended for future groups to find a working cross compiler and complete the DSP 

implementation.  

 Once the hardware subsystems are mounted to the platform, the next step would be to integrate the 

software components presented in this project into a single program. The DSP code could then be loaded into the 

DSP core from the single program to provide image processing services required for object detection. It would be 

reasonable to expect the next project to completely finish the above software and hardware integration to fully 

provide an aerial platform to the electrical engineering department.  Fly-by-wire controls replacing the standard 
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transmitter/receiver combination with a laptop communicating with the BeagleBoard over a wireless 

communication protocol could be implemented as a test application for the quadcopter platform. 

  

 Following the integration described above, the platform will provide the department with an excellent 

source of future project topics including: aerial navigation and mapping, 3-dimensional localization, and aerial 

drones. These topics will be filled with new and exciting projects for future teams and provide further opportunity 

to expand the project possibilities at Bradley University.   
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https://www.leopardimaging.com/uploads/LI_LBCM5M1_Camera_Board.pdf
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APPENDIX A: SWITCHING POWER REGULATOR 
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APPENDIX B: I2C TRANSLATOR 
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APPENDIX C: I2CTEST 

//#include <glib.h> 

//#include <glib/gprintf.h> 

#include <errno.h> 

#include <string.h> 

#include <stdio.h>#include <stdlib.h> 

#include <unistd.h> 

#include <linux/i2c-dev.h> 

#include <sys/ioctl.h> 

#include <sys/types.h> 

#include <sys/stat.h> 

#include <fcntl.h> 

double lookup (float input); 

int main(void) { 

    int file; 

    char filename[40]; 

    const char *buffer; 

    int addr = 0x4b;//0b00101001;        // The I2C address of the ADC 

 

 

    sprintf(filename,"/dev/i2c-2"); 

    if ((file = open(filename,O_RDWR)) < 0) { 

        printf("Failed to open the bus."); 

        /* ERROR HANDLING; you can check errno to see what went wrong */ 

        exit(1); 

    } 

 

    if (ioctl(file,I2C_SLAVE,addr) < 0) { 

        printf("Failed to acquire bus access and/or talk to slave.\n"); 

        /* ERROR HANDLING; you can check errno to see what went wrong */ 

        exit(1); 

    } 

 

    char buf[10] = {0}; 

    float data; 

    char channel; 

 int i; 

  

while(1){ 

    for(i = 0; i<6; i++) { 

  buf[0] = 0b10010110; 

     if (write(file,buf,1) != 1) { 

        /* ERROR HANDLING: i2c transaction failed */ 

        printf("Failed to write to the i2c bus.\n"); 

        buffer = strerror(errno); 

        printf(buffer); 

        printf("%d\n\n",i); 

  } 

  switch(i){ 

   case 0: 

    buf[0] = 0b10000100; 

    break; 

   case 1: 

    buf[0] = 0b11000100; 

    break; 



 

20 

 

   case 2: 

    buf[0] = 0b10010100; 

    break; 

   case 3: 

    buf[0] = 0b11010100; 

    break; 

   case 4: 

    buf[0] = 0b10100100; 

    break; 

   case 5: 

    buf[0] = 0b11100100; 

    break; 

  }if (write(file,buf,1) != 1) { 

        /* ERROR HANDLING: i2c transaction failed */ 

        printf("Failed to write to the i2c bus.\n"); 

        buffer = strerror(errno); 

        printf(buffer); 

        printf("%d\n\n",i); 

  } 

        // Using I2C Read 

  buf[0] = 0b10010111; 

  write(file,buf,1); 

        if (read(file,buf,2) != 2) { 

            /* ERROR HANDLING: i2c transaction failed */ 

            printf("Failed to read from the i2c bus.\n"); 

            buffer = strerror(errno); 

            printf(buffer); 

            printf("\n\n"); 

        } else { 

            data = (float)((buf[0] & 0b00001111)<<8)+buf[1]; 

            data = data/4096*5; 

            channel = i;//((buf[1] & 0b00110000)>>4); 

            printf("Channel %02d Data:  %02f cm: %01f\n",channel,data, 

lookup(data)); 

        } 

    } 

 printf("\n\n\n\n"); 

    //unsigned char reg = 0x10; // Device register to access 

    //buf[0] = reg; 

    sleep(1);     

} 

} 

double lookup (float input){ 

if (input >= 2.8) 

 return 0; 

else if(input >= 2.53) 

 return ((15-20)/(2.75-2.53))*(input-2.53) + 15; 

else if(input >=2) 

 return ((20-30)/(2.53-2))*(input-2) + 20; 

else if(input >=1.53) 

 return ((30-40)/(2-1.53))*(input-1.53) + 30; 

else if(input >=1.25) 

 return ((40-50)/(1.53-1.25))*(input-1.25) + 40; 

else if(input >=1.1) 

 return ((50-60)/(1.25-1.1))*(input-1.1) + 50; 

else if(input >=.9) 
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 return ((60-70)/(1.1-.9))*(input-.9) + 60; 

else if(input >=.8) 

 return ((70-80)/(.9-.8))*(input-.8) + 70; 

else if(input >=.7) 

 return ((80-90)/(.8-.7))*(input-.7) + 80; 

else if(input >=.65) 

 return ((90-100)/(.7-.65))*(input-.65) + 90; 

else if(input >=.6) 

 return ((100-110)/(.65-.6))*(input-.6) + 100; 

else if(input >=.55) 

 return ((110-120)/(.6-.55))*(input-.55) + 110; 

else if(input >=.51) 

 return ((120-130)/(.55-.51))*(input-.51) + 120; 

else if(input >=.46) 

 return ((130-140)/(.51-.46))*(input-.46) + 130; 

else if(input >=.45) 

 return ((140-150)/(.46-.45))*(input-.45) + 140; 

else 

 return 155; 

}  
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APPENDIX D: PWM.C 

/* 

Beagleboard PWM Driver Program 

-PWM.c   Startup/Initialization 

-PWM_Funcs.c PWM Generation Routine 

 

=======PWM.c======= 

Copyleft Bradley Bergerhouse 

   Bradley University 

   March 22, 2012 

   bbergerhouse@mail.bradley.edu 

*/ 

#include <sys/shm.h> 

#include <sys/mman.h> 

#include <stdio.h> 

#include <string.h> 

#include <stdlib.h> 

#include <pthread.h> 

#include <unistd.h> 

#include <time.h> 

#include <fcntl.h> 

#include <sys/types.h> 

#include <sys/stat.h> 

#include"PWM_Funcs.c" 

 

/* Pin 1 1.8V 

 Pin 2 5V 

 Pin 3 139  Y 

 Pin 4 144  N 

 Pin 5 138  Y 

 Pin 6 146  N 

 Pin 7 137  Y 

 Pin 8 143  N 

 Pin 9 136  Y 

 Pin 10 145  N 

 Pin 11 135  Y 

 Pin 12 158  Y 

 Pin 13 134  Y 

 Pin 14 162  Y 

 Pin 15 133  Y 

 Pin 16 161  Y 

 Pin 17 132  Y 

 Pin 18 159  Y 

 Pin 19 131  Y 

 Pin 20 156  Y 

 Pin 21 130  Y 

 Pin 22 157  Y 

 Pin 23 183  N 

 Pin 24 168  N 

 Pin 25 REGEN 

 Pin 26 nRESET 

 Pin 27 GND 

 Pin 28 GND 

 

 the GPIO pins consist wholely of pins 
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 on the 5th and 6th gpio chips.  These 

 chips service CPU pins 128 to 191. 

  

 we will use Chip 5 which services pins 

 128 to 159.  PWM channels will be assigned 

 accordingly. 

*/  

enum CHANNEL 

{ 

 PWM_T, 

 PWM_R, 

 PWM_A, 

 PWM_E, 

 PWM_G 

}; 

 

/* 

Some useful #defines for information 

used to generate the signals. 

 

NUMCHAN  - Number of PWM channels 

DELAY  - Delay between a data change 

     and pin update under Angstrom 

PWMPERIOD - Total time (ns) in a pulse period 

ZEROPCT  - Time logic high for 0% PWM 

PHUNDRED - Time logic high for +100% PWM 

NHUNDRED - Time logic high for -100% PWM 

*/ 

#define NUMCHAN  5 

#define DELAY  250000 

#define PWMPERIOD  20000000 

#define ZEROPCT  2000000 - DELAY 

#define PHUNDRED  2500000 - DELAY 

#define NHUNDRED 1500000 - DELAY 

int main() 

{ 

    int i=0,j,k,l, segID, md; 

 char str[125]; 

 char* mem; 

 

 /*Channels in order 

   0-T   1-R   2-A   3-E   4-G*/ 

 /*create shared memory segment for communication*/ 

 segID = shmget(IPC_PRIVATE, NUMCHAN + 1, S_IRUSR | S_IWUSR); 

 mem = (char *) shmat(segID, NULL, 0); 

 

 time_info PWM[NUMCHAN] = {{PWM_T, ZEROPCT, PWMPERIOD - ZEROPCT, 144, 

mem}, 

         {PWM_R, ZEROPCT, PWMPERIOD - 

ZEROPCT, 138, mem}, 

         {PWM_A, ZEROPCT, PWMPERIOD - 

ZEROPCT, 146, mem}, 

         {PWM_E, NHUNDRED, PWMPERIOD - 

NHUNDRED, 137, mem}, 

         {PWM_G, ZEROPCT, PWMPERIOD - 

ZEROPCT, 143, mem}}; 
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 pthread_t PWM_Thread[NUMCHAN]; 

 

 /*open gpio ports for writing 

   do this through the kernel driver because 

   this is not a timing specific function*/ 

 

 j = open("/sys/class/gpio/export", O_WRONLY); 

 for(i = 0; i < NUMCHAN; ++i) { 

  sprintf(str, "%d", PWM[i].GPIO); 

  puts(str); 

  write(j, str, 3); 

  sprintf(str, "/sys/class/gpio/gpio%d/direction", PWM[i].GPIO); 

  k = open(str, O_WRONLY); 

  write(k, "out", sizeof("out")); 

  close(k); 

 } 

 close(j); 

 

 puts("Exported channels."); 

 /*start a thread for each PWM channel*/ 

 /*in the future a pointer to the specific 

   pin's address should be sent as part of the PWM struct*/ 

 for(i = 0; i < NUMCHAN; ++i) 

  pthread_create(&PWM_Thread[i], NULL, pwm, (void*)&PWM[i]); 

     

 puts("Started Threads.  Mapping Memory"); 

 

 md = open("/dev/mem", O_RDWR | O_SYNC); 

 volatile ulong *gpio; 

 gpio = (ulong*) mmap(NULL, 0x10000, PROT_READ | PROT_WRITE, MAP_SHARED, 

md, 0x49050000); 

 if(gpio == MAP_FAILED)   

  puts("Map Failure."); 

  

 close(md); 

 puts("Memory Mapped"); 

 while(1)     

    { 

  sleep(1); 

  /*gpio 5 pwm values 

  0000 0000 0001 1111 1010 1000 1001 0110 - 2074774 

  0000 0000 0001 1111 1011 0100 0100 1110 - 2077774 

  0000 0000 0001 1111 1010 1100 0111 1110 - 2075774 

  changing bits 

  0000 0000 0000 0000 0001 1100 1111 1000*/ 

  printf("GPIO Chip 5 : %o\n", gpio[0x6038/4]); 

    } 

  

 shmdt(mem); 

 shmctl(segID, IPC_RMID, NULL); 

} 
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APPENDIX E: PWM_FUNCS.C 

/* 

Beagleboard PWM Driver Program 

-PWM.c   Startup/Initialization 

-PWM_Funcs.c PWM Generation Routine 

 

=======PWM_Funcs.c======= 

Copyleft Bradley Bergerhouse 

   Bradley University 

   March 22, 2012 

   bbergerhouse@mail.bradley.edu*/ 

#include <sys/shm.h> 

#include <sys/stat.h> 

#include <sys/mman.h> 

#include <stdio.h> 

#include <pthread.h> 

#include <time.h> 

#include <fcntl.h> 

#include <sys/types.h> 

#include <sys/stat.h> 

#define NUMCHAN  5 

 

/*gpio[0x6038/4] == gpio chip 5*/ 

  

typedef struct 

{ 

 char channel; 

    long int time_h; 

    long int time_l; 

 int GPIO; 

 char* mem; 

 ulong* gpbf; 

}time_info; 

 

/* 

Rudimentary lock/unlock functions for the shared memory segment 

 

By reading the memory at m[NUMCHAN] it is possible to determine 

which channel has "locked" the memory.  This lock system relies 

on good coding practices of locking/unlocking suring modifications 

 

m[c] whether or not the channel {c = 0 to NUMCHAN - 1} has locked 

a the segment.  This is currently not used in any fashion but may 

be useful in the future. 

*/ 

void lock(int c, char * m) { 

 m[NUMCHAN] = c + 1; 

 m[c] = 1; 

} 

 

void ulock(int c, char * m) { 

 m[c] = 0; 

 m[NUMCHAN] = 0; 

} 
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/* 

PWM generation function using Direct Memory Access for improved speed 

 

 

*/ 

void *pwm(void* pwm_times) 

{ 

    int fs, cp_pin; 

    int i=0; 

 ulong * buf; 

 ulong mask = 1; 

    char ch; 

 char str[125]; 

    struct timespec pwm_delay; 

 

 puts(""); 

 pwm_delay.tv_sec=0; 

    time_info *pwm_ptr = (time_info*)pwm_times; 

 printf("Entering Thread : %d:%d\n", pwm_ptr->channel, pwm_ptr->GPIO); 

 cp_pin = pwm_ptr->GPIO % 32; 

 mask = mask << cp_pin; 

 buf = pwm_ptr->gpbf; 

 

 sprintf(str, "/sys/class/gpio/gpio%d/value", pwm_ptr->GPIO); 

    fs = open(str, O_WRONLY); 

 pwm_delay.tv_sec=0; 

 printf("Starting PWM on Pin : %d\n", pwm_ptr->GPIO); 

 

    while(1)     

    {     

  //while(pwm_ptr->mem[5] != 0); 

  //lock(pwm_ptr->channel, pwm_ptr->mem); 

  buf[0x6090/4] = (buf[0x6090/4] & ~mask); 

        write(fs, "0", 1);//change to a direct memory 

  //ulock(pwm_ptr->channel, pwm_ptr->mem); 

        pwm_delay.tv_nsec=pwm_ptr->time_l; 

        nanosleep(&pwm_delay,NULL);     

         

  //while(pwm_ptr->mem[5] != 0); 

  //lock(pwm_ptr->channel, pwm_ptr->mem); 

  buf[0x6094/4] = (buf[0x6094/4] | mask); 

  write(fs, "1", 1);//change to a direct memory 

  //ulock(pwm_ptr->channel, pwm_ptr->mem); 

        pwm_delay.tv_nsec=pwm_ptr->time_h; 

        nanosleep(&pwm_delay,NULL);       

    } 

    close(fs); 

} 


